**Center Wendeplatten-Zentrierbohrer

Der i-Center ist eine Marke von Nine9, dem Erfinder des weltweit ersten wendeplattenbasierten Zentrierbohrers. Eine Wendeplattenlösung als Alternative zu VHM- bzw. HSS-Werkzeugen, welche nachstehende Vorteile erbringen.

Eigenschaften

Erster wendeplattenbasierter Zentrierbohrer weltweit. Verkürzte Einstellzeit und Zentrierzeit auf der Maschine. Höhere Standzeit, reduzierte Werkzeugkosten.

Hohe Schnittgeschwindigkeit, hoher Vorschub

 Hohe Schnittgeschwindkeit und hoher Vorschub können durch die speziell geschliffene Wendeplatte, sowie den speziell gefertigten Plattensitz erreicht werden. Beispielsweise zum Zentrieren von legiertem Stahl 6000U/Min. und einem Vorschub von 600mm/Min. (0,1mm/Z)

▶ Hervorragende Reproduzierbarkeit

 Die Reproduzierbarkeit der WSP liegt bei 0,02mm in Radialrichtung, welches der Konformität jedes nationalen Standards genügt

▶ Einfache Werkzeugeinrichtung

 Die Axial-Genauigkeit der WSP liegt bei 0,05mm. Das Werkzeug muss nicht nach jedem Wendeplattenwechsel neu ausgerichtet werden

▶ Verlängerte Werkzeuglebensdauer

- Innenkühlung kann direkt durch den Zentrierbohrer geführt werden, welches die Leistung erhöht und die Lebensdauer verlängert
- Wendeplattengeometrie, Sorten und Beschichtungen sind speziell für diese Zentrierbohrungen kreiert worden

NC2057 (IC10)

NC5074 (IC08)

DIN 332 Form R

Ø1.0~Ø10

DIN 332 Form A + B

Ø1.0~Ø10

DIN 332 Form A

Ø2.0~Ø3.15

ANSI 60°

#2.0~#10

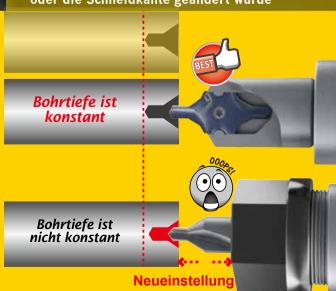
NEW NC2057:

- P35 Sorte, AL(L)-Beschichtung, Universalsorte für alle Stahlsorten
- Zweischneidige, vollständig geschliffene Wendeplatte zur Verbesserung der Bearbeitungsstabilität (IC10-WSP)

NC5074:

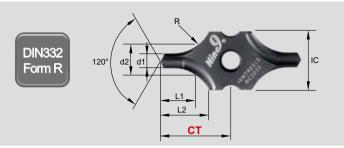
• P40 Qualität, Helica beschichtet, für kleine Zentrierdurchmesser (IC08-WSP)

NC2033:


• K20F Qualität, TiAIN beschichtet, für alle Standard- und vergüteten Stähle sowie Gussmaterialien geeignet

▶ Wendeplatten:

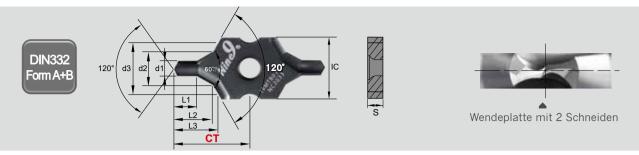
- Schneidendesign entspricht dem eines VHM-Zentrierbohrers, um höchstmögliche Schnittgeschwindigkeiten und Vorschübe zu ermöglichen
- Jede Wendeschneidplatte hat 2 Schneiden



▼ Hervorragende Wiederholgenauigkeit. Es ist keine erneute Einstellung der Werkzeuglänge erforderlich, nachdem der Einsatz oder die Schneidkante geändert wurde

Nine9 Schneidwerkzeuge & Werkzeughalter 1-45

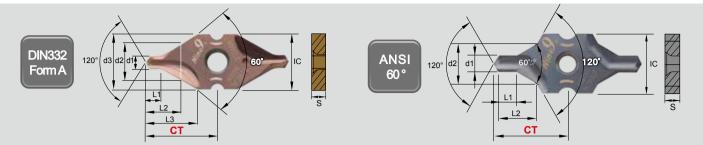
DIN332 Form R



▶ Für DIN332 Form R Zentrierungen >>

	IC	Bestellnummer	Beschichtung	Qualität	C	11	d2	L1	L2	R	S	CT ±0.025
		I9MT08T1R0100-NC5074			1.00		2.12	2.16	4.14	2.8		7.55
	08	I9MT08T1R0125-NC5074	Helica	P40	1.25	+ 0.14	2.65	2.74	4.64	3.5	2.00	7.90
	00	I9MT08T1R0160-NC5074	Пенса	F40	1.60	0	3.35	3.45	5.13	4.5	2.00	8.40
		I9MT08T1R0200-NC5074			2.00		4.25	4.45	6.08	5.65		9.10
NE		I9MT1003R0100-NC2057		P35 -	1.00		2.12	2.16	4.72	2.8		
		I9MT1003R0125-NC2057			1.25		2.65	2.74	5.22	3.5		
		I9MT1003R0150-NC2057			1.50	+ 0.14	3.60	3.67	6.14	5.0		
	10	I9MT1003R0160-NC2057	AL(L)		1.60	 O	3.35	3.45	5.32	4.5	3.00	12.35
10	10	I9MT1003R0200-NC2057			2.00		4.25	4.45	6.50	5.65	3.00	12.33
		I9MT1003R0250-NC2057			2.50		5.30	5.59	7.66	7.15		
		I9MT1003R0300-NC2057			3.00	+ 0.18	5.70	6.92	9.50	10.00		
		I9MT1003R0315-NC2057			3.15	0	6.70	7.21	8.93	9.00		
		I9MT12T2R0200-NC2033			2.00	2.00 + 0.14 0	4.25	4.45	6.64	5.65		11.73
	12	I9MT12T2R0250-NC2033			2.50		5.3	5.59	8.11	7.15	2.54	13.00
		I9MT12T2R0315-NC2033			3.15		6.7	7.21	9.63	9.0		14.00
	16	I9MT1603R0400-NC2033	TAIN	KOOF	4.00	+ 0.18 0	8.5	9.06	12.23	11.0	2 10	19.40
	10	I9MT1603R0500-NC2033	TiAIN	K20F	5.00		10.6	11.45	14.2	14.0	3.18	19.40
_	20	I9MT2004R0630-NC2033			6.30		13.2	14.63	18.2	18.0	4.76	28.40
	20	I9MT2004R0800-NC2033		-	8.00 + 0.22	17.0	18.63	20.44	22.5	- 4.76	28.30	
_	25	I9MT2506R1000-NC2033			10.00		21.2	23.51	25.8	28.0	6.35	34.20

DIN332 Form A+B



► Für DIN332 Form A+B Zentrierungen >>

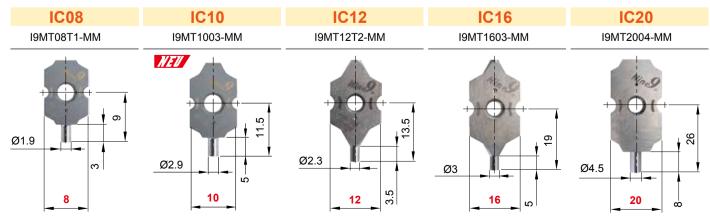
	IC	Bestellnummer	Beschichtung	Qualität	d	11	d2	d3	L1	L2	L3	S	CT ±0.025	
		I9MT08T1B0100-NC5074			1.00		2.12	3.15	1.3	2.21	2.51		7.55	
	08	I9MT08T1B0125-NC5074	Helica	P40	1.25	+ 0.14	2.65	4.0	1.6	2.75	3.14	2.00	7.90	
	00	I9MT08T1B0160-NC5074	Пепса	P40	1.60	0	3.35	5.0	2.0	3.46	3.93	2.00	8.40	
		I9MT08T1B0200-NC5074			2.00		4.25	6.3	2.5	4.39	4.98		9.10	
N		I9MT1003B0100-NC2057			1.00		2.12	3.15	1.3	2.21	2.51			
		I9MT1003B0125-NC2057			1.25		2.65	4.0	1.6	2.75	3.14	3.00		
		I9MT1003B0150-NC2057			1.50	+ 0.14	3.18	4.50	2.0	3.45	3.84			
	10	I9MT1003B0160-NC2057	AL(L)		1.60	0	3.35	5.0	2.0	3.46	3.93		12.35	
	I9MT1003B0200-NC2057	, i=(=)		2.00		4.25	6.3	2.5	4.39	4.98		12.55		
	I9MT1003B0250-NC2057			2.50		5.3	8.0	3.1	5.53	6.28				
		I9MT1003B0300-NC2057			3.00	+ 0.18	6.46	9.00	4.1	7.10	7.83			
_		I9MT1003B0315-NC2057			3.15	0	6.7	10.0	3.9	6.90	7.85			
		I9MT12T2B0200-NC2033				2.00	+ 0.14	4.25	6.3	2.5	4.39	4.98		11.73
	12	I9MT12T2B0250-NC2033					2.50	0	5.3	8.0	3.1	3.1 5.53 6.28	6.28	2.54
		I9MT12T2B0315-NC2033			3.15		6.7	10.0	3.9	6.90	7.85		14.0	
	16	I9MT1603B0400-NC2033	TiAIN	K20F	4.00	+ 0.18 0	8.5	12.5	5.0	8.9	10.03	3.18	19.4	
16	I9MT1603B0500-NC2033	HAIN	NZUI*	5.00		10.6	16.0	6.3	11.15	12.68	3.10	19.4		
		I9MT2004B0630-NC2033			6.30	30	13.2	18.0	8.0	13.98	15.33	4.76	28.4	
20	I9MT2004B0800-NC2033			8.00	+ 0.22	17.0	*20	10.1	17.89	18.73	7.70	28.3		
_	25	I9MT2506B1000-NC2033		1	10.00		21.2	*25	12.8	22.5	23.57	6.35	34.2	

^{*} Hinweis: Das Maß d3 ist abweichend zu DIN332

DIN332 Form A & ANSI 60°

Für DIN332 Form A Zentrierungen >>

IC	Bestellnummer	Beschichtung	Qualität		d1	d2	d3	L1	L2	L3	S	CT ±0.025
	I9MT08T1A0200-NC5074	Helica	P40	2.0	+ 0.14	0.14 4.25		2.15	4.10	7.35		
08	I9MT08T1A0250-NC5074			2.5	0	5.3	8	2.58	5.00	7.34	2.00	10.5
	I9MT08T1A0315-NC5074			3.15	+ 0.18 0	6.7		3.23	6.30	7.43		

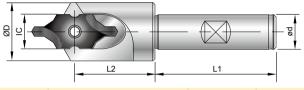

Für ANSI 60° Zentrierungen >>

IC	Bestellnummer	Beschichtung	Qualität	Größe		d1		d	12	L	.1	L2	S	СТ	
	2001011111111111		4		Constant Constant		mm		mm		mm		mm		±0.025
	I9MT12T2A2-NC2033				#2	5/64	1.98	+0.14	3/16	4.76	5/64	1.98	4.4		12.6
12	I9MT12T2A3-NC2033			#3	7/64	2.78	0	1/4	6.35	7/64	2.78	5.9	2.54	13.8	
	I9MT12T2A4-NC2033			#4	1/8	3.18		5/16	7.94	1/8	3.18	7.3		14.25	
16	I9MT1603A5-NC2033	TIAINI	K20F	#5	3/16	4.76	+0.18	7/16	11.11	3/16	4.76	10.3	3.18	20.0	
	I9MT2004A6-NC2033	TiAIN		#6	7/32	5.56		1/2	12.7	7/32	5.56	11.8		27.75	
20	I9MT2004A7-NC2033			#7	1/4	6.35		5/8	15.88	1/4	6.35	14.6	4.76	28.5	
	I9MT2004A8-NC2033			#8	5/16	7.94	+0.22	3/4	19.05	5/16	7.94	17.6		29.0	
25	I9MT2506A10-NC2033			#10	3/8	9.53		0.98"	25.0	3/8	9.53	22.9	6.35	34.9	

▶ Messeinsatz >>

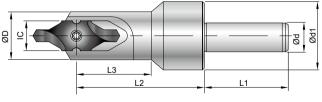
- In Drehmaschinenfutter einbaubar, um die Mitte von Arbeitsspindel und Werkzeug auszurichten
- Jeder Einsatz hat eine Messspitze
- Konzentrizität: ± 0,01mm

Wendeplatten-Zentrierbohrer



▶ Weldon Schaft >>

- Hergestellt aus hochvergüteten Stahl, 58HRC
- Der IC08 besitzt einen zylindrischen Schaft Alle anderen Schäfte haben einen Weldon Schaft



IC	Bestellnummer	Ød	L1	L2	ØD	Schraube	Schlüssel	
08	99616-IC08-10F	10	30	18.5	12	*NS-25060	NK-T7	
	99616-IC08-3/8F	3/8"	30	10.0	12	0.9 Nm	INIX-17	
<i>NEV</i> 10	99616-IC10-12F	12	45	24.5	16	*NS-25060 0.9 Nm	NK-T7	
12	99616-IC12-16F	16	48	30.5	21	NS-30072	NK-T9	
12	99616-IC12-5/8F	5/8"	40	30.3	21	2.0 Nm	NK-19	
16	99616-IC16-16F	16	48	37	27	NS-35080	NK-T15	
10	99616-IC16-5/8F	5/8"	40	31	21	2.5 Nm	NK-115	
	99616-IC20-20F	20	F0	F4	22	NS-50125	NIZ TOO	
20	99616-IC20-3/4F	3/4"	50	51	32	5.5 Nm	NK-T20	
25	99616-IC25-25F	25	EG	EG	43	NS-50125	NIZ TOO	
25	99616-IC25-1F	1"	56	56	43	5.5 Nm	NK-T20	

^{*}Drehmoment-Schraubendreher wird empfohlen

Gewuchteter Zylinderschaft >>

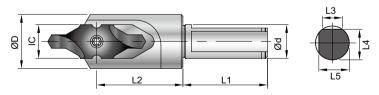
- Der vorgewuchtete Halter erhöht die Stabilität der Zentrierung, um ein hochpräzises Profil zu erhalten
- G6.3 / 10,000U / Umdrehung pro Min.

IC	Bestellnummer	Ød	Ød1	L1	L2	L3	ØD	Schraube	Schlüssel
08	99616-IC08-10B	10	22	30	33.5	19	12	*NS-25060 0.9 Nm	NK-T7
12	99616-IC12-12B	12	34	48	51	30	21	NS-30072 2.0 Nm	NK-T9
16	99616-IC16-16B	16	39	48	67	37	27	NS-35080 2.5 Nm	NK-T15
20	99616-IC20-20B	20	49	50	86	51	32	NS-50125 5.5 Nm	NK-T20
25	99616-IC25-25B	25	59	56	99	56	43	NS-50125 5.5 Nm	NK-T20

Wendeplatten-Zentrierbohrer

▶ Vierkant Schaft 25 x 25 rechte / linke Ausführung >>

- Für den Einsatz auf Drehmaschinen, Klemmung von VDI- und BMT-Haltern
- · Hergestellt aus hochvergüteten Stahl, 40HRC
- · Andere Größen sind auf Anfrage erhältlich



IC	Bestellnummer	L1	L2	Schraube	Schlüssel	
08	99616-IC08-R2525MF	8	3.25	*NS-25060	NK-T7	
	99616-IC08-L2525MF	0	5.25	0.9 Nm	NR-17	
12	99616-IC12-R2525MF	- 11	4.9	NS-30072	NK-T9	
	99616-IC12-L2525MF	11	4.5	2.0 Nm	NK-19	
16	99616-IC16-R2525MF	13	4.9	NS-35080	NK-T15	
	99616-IC16-L2525MF	13	4.9	2.5 Nm	1117-1115	

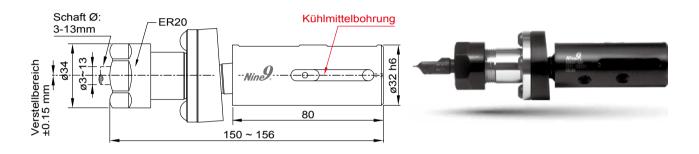
^{*}Drehmoment-Schraubendreher wird empfohlen

▶ Zylinderschaft mit 2 Spannflächen >> Nicht auf Lager

- Auf Drehmaschinen verwendbar
- Ausführung mit doppeltem Flachschaft für Werkzeughalter mit seitlicher Verriegelungsfläche
- 180° für den Einsatz oben, 90° für den Einsatz vorne

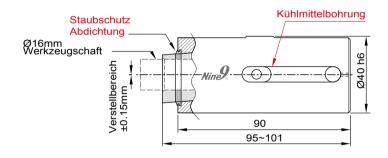
IC	Bestellnummer	Ød	L1	L2	L3	L4	L5	ØD	Schraube	Schlüssel
08	99616-IC08-10S	10	30	18.5	6	9	9	12	*NS-25060 0.9 Nm	NK-T7
12	99616-IC12-16S	16	48	30.5	9.33	14.5	14.5	21	NS-30072 2.0 Nm	NK-T9
16	99616-IC16-16S	16	48	37	9.33	14.5	14.5	27	NS-35080 2.5 Nm	NK-T15
20	99616-IC20-20S	20	50	51	12	18	18	32	NS-50125 5.5 Nm	NK-T20
25	99616-IC25-25S	25	56	56	13.57	23	23	43	NS-50125 5.5 Nm	NK-T20

^{*}Drehmoment-Schraubendreher wird empfohlen


Höheneinstellhülse

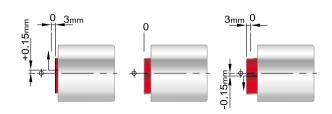
▶ Prinzip >>

- Speziell zur Höheneinstellung von Zentrierbohrern, NC-Anbohrern, Reibahlen und Gewindewerkzeugen auf CNC-Maschinen
- Der Grundkörper besteht aus 2 Hülsen, die innere Hülse ist zum Spannen des Werkzeuges
- Falls die Werkzeugachse nicht mit der Maschinenachse übereinstimmt, kann durch Verdrehen der Einstellschraube die Höhe nach oben oder unten korrigiert werden


▶ Artikelnummer: 99600-320H >>

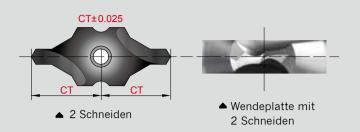
▶ Ausführung: SB32-IDER20

▶ Artikelnummer: 99600-400H >>


Ausführung: SB40-ID16

▶ Anwendungsgebiete >>

- Benutzung auf CNC-Maschinen zur Höheneinstellung
- Hülse kann in VDI40 und VDI50 E2 Halter sowie anderen Haltern mit Innenkühlung verwendet werden
- Höheneinstellung im Bereich: ±0.15mm
- Größtmögliche Achsbewegung 6mm



Leistung

▶ Profitieren Sie von der richtigen Entscheidung >>

- Hohe Geschwindigkeit und Vorschub reduzieren Bearbeitungszeiten
- Das einzigartige Design erhöht die Standzeiten und reduziert Umrüstzeiten

► Vergleichsbeispiel >> Werkstückmaterial: niedrig legierter Stahl, 850N/mm²
Maschine: Vertikales BAZ, BT40 mit Innenkühlung

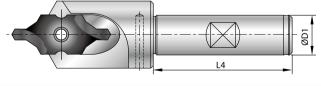
▶ Oberfläche >>

i-Center Wendeplatten	Werk	stoff SCM440		
	Vc	60	in m/min.	
I9MT1603B0500	S	3800	in U/min.	
	f	0.1	mm/Z	
NC2033	F	380	mm/min.	
	Ap	13.5	mm	

i-Center Anfrageformular

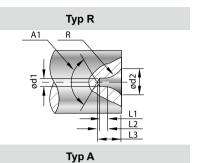
▶ Bisherige Bearbeitung >>

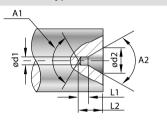
▶ Ziel der Verbesserung >>

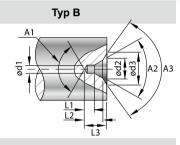

Folgende Informationen sollten im Gespräch mit dem Kunden geklärt werden:

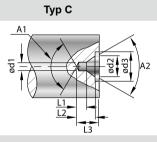
3	mon in Coopidon in dom randon goldar worden.
Maschine	
Maschinen Typ	
Spindeldrehzahl	Max. r.p.m.
Antriebsleistung	KW HP
	NEIN
Kühlmittelzufuhr	Wenn ja, Extern
	Intern bar(psi)
Aktuelles Werkzeug	
0.1.34	HSS Zentrierbohrer VHM-Zentrierbohrer
Schnittgeschwindigkeit	m/min. SFM
Andere	
Vorschub	mm/U.
Werkstückmaterial	
Materialnummer	
Aut dan Zantniamura	R A B C
Art der Zentrierung	Andere, Zeichnung beigefügt.
And and Antandamus	Oberflächengüte
Andere Anforderungen	Toleranz (siehe unten)

▶ Spezielle Werkzeughalter Schaftabmessungen >>

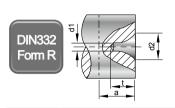

- Besondere Werkzeughalterschäfte: D1 und L4 angeben
- Wie beigefügter Zeichnung

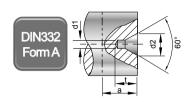

Metrisch Zoll

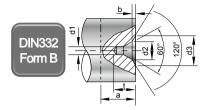



▶ Größe der Zentrierung >>

- Bitte Werkstück-Zeichnung beifügen
- Eine der folgenden Typen sollte gewählt werden

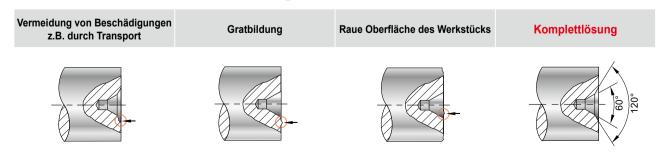



Andere	
A1	


Maßtabelle	A1	A2	А3	ød1	ød2	ød3
Abmessung						
Toleranz		+0° -1°	±1°	±0.05	±0.05	
Maßtabelle	L1	L2	L3	R	øD1	L4
Abmessung						
Toleranz	±0.05	±0.05	±0.05	±0.5	h6	

Technische Daten ISO 2541-1972 / DIN332

▶ 60° Zentrierungen nach DIN332 >> Form R, A und B


STD		N332 Form O 2541-19		DIN332 Form A ISO 866-1975			DIN332 Form B ISO 2540 1973				
d1	d2	t	а	d2	t	а	d2	b	d3	t	а
1	2.12	1.9	3	2.12	1.9	3	2.12	0.3	3.15	2.2	3.5
1.25	2.65	2.3	4	2.65	2.3	4	2.65	0.4	4	2.7	4.5
1.6	3.35	2.9	5	3.35	2.9	5	3.35	0.5	5	3.4	5.5
2	4.25	3.7	6	4.25	3.7	6	4.25	0.6	6.3	4.3	6.6
2.5	5.3	4.6	7	5.3	4.6	7	5.3	0.8	8	5.4	8.3
3.15	6.7	5.8	9	6.7	5.9	9	6.7	0.9	10	6.8	10
4	8.5	7.4	11	8.5	7.4	11	8.5	1.2	12.5	8.6	12.7
5	10.6	9.2	14	10.6	9.2	14	10.6	1.6	16	10.8	15.6
6.3	13.2	11.4	18	13.2	11.5	18	13.2	1.4	18	12.9	20
8	17	14.7	22	17	14.8	22	17	1.6	22.4	16.4	25
10	21.2	18.3	28	21.2	18.4	28	21.2	2	28	20.4	31

^{*} a: Geringstmöglicher Materialabtrag nach dem Drehen oder Schleifen. (mm/zoll)

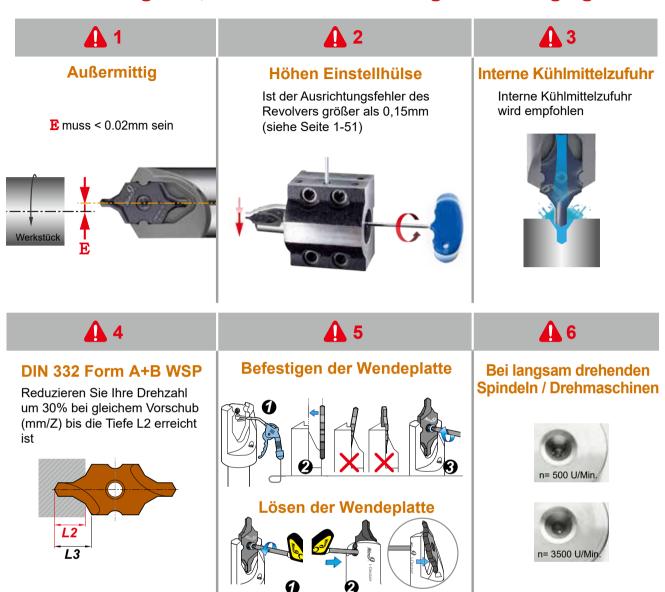
▶ Vorteil bei Form R Zentrierungen

▶ Vorteil bei Form B Zentrierungen

Anwendungen

▶ Tipp >>

- Diverse Anwendungsbeispiele und Produkte Wellen vom Motor, Transmission Getriebe, Lager, Motoren, Schleifteile, Spindeln, Getrieben, Lüfter, Kreuzgelenke ...
- Sonderlösungen auf Anfrage



Technik

▶ Bevor Sie beginnen, beachten Sie bitte die folgenden Bedingungen:

▶ Schnittdaten

- Um die Schnittgeschwindigkeit und die Drehzahl zu errechnen nutzen Sie "d1"
- "F" Vorschubgeschwindigkeit pro Minute F = n x f = IPR x r.p.m.

	Metric	Zoll			
	d1 = Durchmesser (in mm)		d1 = Durchmesser / Zoll		
$n = \frac{Vc X 1000}{}$	n = Drehzahl (in U/Min.)	n =(3.82xVc)	n = Drehzahl (in U/Min.)		
" π X d1	Vc = Schnittgeschwindigkeit (in m/Min.)	d1	Vc = Schnittgeschwindigkeit-ft./Min.		
F = n x f	f = mm/Z	F= IPRxr.p.m	f = IPR = Zoll/rev.		
	F = mm/Min.		F = Zoll/Min.		

Technik

▶ Ø1~Ø3.15 (#2~#4)

	Werkstoff /	Vc	d1	IC08	/ IC10					
Materialgruppe		(m/Min.)	(Pilot- durchmesser)	Ø1~1.25	Ø1.6~3.15	Ø2 (#2)	Ø2.5 (#3)	Ø3.15 (#4)		
P	unlegierter	< 80	n U/Min.	2000 ~ 10000	1600 ~ 8000	1600 ~ 8000	1400 ~ 7000	1200 ~ 6000	~ ~	
	Stahl C<0.3%		f mm/Z	0.02~0.03~0.05	0.03~0.05~0.06	0.04~0.06~0.08	0.06~0.08~0.10	0.08~0.10~0.12	• •	
	unlegierter	< 70	n U/Min.	2000 ~ 9000	1600~ 7200	1600 ~ 7200	1400 ~ 6300	1200 ~ 5400		
	Stahl C>0.3%		f mm/Z	0.02~0.03~0.05	0.03~0.04~0.05	0.03~0.04~0.05	0.06~0.08~0.10	0.08~0.10~0.12	• 0	
	niedriglegierter-	< 65	n U/Min.	2000 ~ 8000	1600 ~ 6400	1600 ~ 6400	1400 ~ 5600	1200 ~ 4800		
ı	Stahl C<0.3%		f mm/Z	0.01~0.02~0.04	0.02~0.03~0.05	0.02~0.03~0.05	0.04~0.06~0.08	0.06~0.08~0.10	• 0	
	hochlegierter-	< 60	n U/Min.	1000 ~ 6000	800 ~ 4800	800 ~ 4800	700 ~ 4200	600 ~ 3600		
	Stahl C>0.3%		f mm/Z	0.01 ~ 0.02	0.01~0.02~0.04	0.01~0.02~0.04	0.02~0.04~0.06	0.04~0.06~0.08	• 0	
1	Nichtrostender	< 20	n U/Min.	1000 ~ 3000	800 ~ 2400	800 ~ 2400	700 ~ 2100	600 ~ 1800	• 0	
M	Stahl		f mm/Z	0.003 ~ 0.01	0.005 ~ 0.02	0.01 ~ 0.02	0.01~0.02~0.03	0.02~0.03~0.05	≥ 5 bar	
	Cycooloon	< 70	n U/Min.	2000 ~ 9000	1600 ~ 7200	1600 ~ 7200	1400 ~ 6300	1200 ~ 5400	Δ:	
K	Gusseisen		f mm/Z	0.01~0.02~0.04	0.02~0.04~0.06	0.02~0.04~0.06	0.04~0.06~0.08	0.06~0.08~0.10	Air	
	Al und	. 000	n U/Min.	6000 ~ 20000	4800 ~ 16000	4800 ~ 16000	4200 ~ 14000	3600 ~ 12000		
	NE-Metalle	< 200	f mm/Z	0.01~0.02~0.03	0.01~0.02~0.04	0.01~0.02~0.04	0.02~0.03~0.05	0.02~0.04~0.06	• 0	

[•] sehr gut geeignet o auch geeignet

▶ Ø4~Ø10 (#5~#10)

Werkstoff / Materialgruppe		Vc	d1 (Pilot- durchmesser)	IC16		IC20			IC25	
		(m/Min.)		Ø4 (#5)	Ø5	(#6)	Ø6.3 (#7)	Ø8 (#8)	Ø10 (#10)	
Р	unlegierter Stahl C<0.3%	< 80	n U/Min.	1000 ~ 5000 900 ~ 45		500	800 ~ 4000	700 ~ 3500	600 ~ 3000	√ √
			f mm/Z	0.08~0.12~0.14	0.10~0.12~0.16		0.10~0.14~0.16	0.12~0.15~0.18	0.14~0.18~0.20	• 0
	unlegierter Stahl C>0.3%	< 70	n U/Min.	1000 ~ 4500	900 ~ 4050 0.10~0.12~0.16		800 ~ 3600	700 ~ 3150	600 ~ 2700	• •
			f mm/Z	0.08~0.12~0.14			0.10~0.14~0.16	0.12~0.15~0.18	0.14~0.18~0.20	
	niedriglegierter- Stahl C<0.3%	< 65	n U/Min.	1000 ~ 4000	900 ~ 3600		800 ~ 3200	700 ~ 2800	600 ~ 2400	• •
			f mm/Z	0.06~0.08~0.10 0.0		10~0.12	0.08~0.12~0.14	0.10~0.14~0.16	0.12~0.16~0.20	
	hochlegierter- Stahl C>0.3%	< 60	n U/Min.	500 ~ 3000	450 ~ 2700		400 ~ 2400	350 ~ 2100	300 ~ 1800	- •
			f mm/Z	0.04~0.06~0.08	0.06~0.0	08~0.10	0.08~0.10~0.12	0.10~0.14~0.16	0.10~0.14~0.16	• 0
M	Nichtrostender Stahl	< 25	n U/Min.	500 ~ 1500	450 ~ 13	350	400 ~ 1200	350 ~ 1050	300 ~ 900	- • o
			f mm/Z	0.02~0.04~0.06	0.02~0.0	04~0.06	0.04~0.06~0.08	0.04~0.06~0.08	0.05~0.07~0.10	-
K	Gusseisen	< 70	n U/Min.	1000 ~ 4500 900 ~ 40		050	800 ~ 3600	700 ~ 3150 600 ~ 2700	Δ:	
			f mm/Z	0.06~0.08~0.10	0.08~0.	10~0.12	0.08~0.12~0.14	0.10~0.14~0.16	0.12~0.16~0.18	Air
	Al und NE-Metalle	< 200	n U/Min.	3000 ~ 10000	2700 ~ 9	9000	2400 ~ 8000	2100 ~ 7000	1800 ~ 6000	
			f mm/Z	0.02~0.04~0.06	0.04~0.0	06~0.08	0.04~0.06~0.08	0.06~0.08~0.10	0.06~0.08~0.10	• •

• sehr gut geeignet o auch geeignet